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STATISTICAL ERROR IN ABSORPTION EXPERIMENTS 

By M. E. Rose and M. M. Shapiro 

ABSTRACT 

In certain exponential absorption experiments, notably measurements of cross sections by trans- 
mission, it is important to achieve minimum statistical error in a limited time, or to minimize the 
counting time required to measure the absorption coefficient with a preassigned accuracy. The con- 
ditions required to attain these ends, i.e., the geometry for optimum transmission, and the best ap- 
portionment of counting times among the incident and transmitted beams and background, have been 
investigated for a wide range of relative backgrounds (10~3 to 10" ), and for two geometries: 
I. Beam area fixed, absorber thickness alone is varied, n. Beam area and absorber thickness are 
both disposable parameters, while the total amount of absorber intercepting the beam remains fixed. 
In both cases the incident flux density and the background rate are assumed constant. The optimum 
transmissions are shown to be, in general, considerably smaller than those commonly used in ab- 
sorption experiments. Thus, in Case I, a useful rule is to employ a transmission of about 0.1 for low 
backgrounds, 0.2 for moderate backgrounds, and 0.3 for high backgrounds. The following have also 
been determined: (a) minimum statistical error for a given total counting time, (b) statistical error 
and the best distribution of counting times for nonoptimum geometry, and (c) sensitivity of the ac- 
curacy or total counting time to deviations from optimum transmission. 

INTRODUCTION 

There are many physical measurements of absorption or transmission of radiation in which the 
transmission is an exponential function of the absorber thickness. Measurements of this kind occur, 
for example, in the fields of optics, x-rays, and nuclear physics. In the latter field the purpose is 
usually to determine a total cross section. 

In most measurements of this type, the thickness of absorber can be chosen at will within reason- 
able limits, i.e., the transmission is a disposable parameter. Suppose for the sake of definiteness 
that the detector is a counter. If a thick absorber is interposed in the beam, the transmitted intensity 
is low, and a relatively long time is required to collect an adequate count. In fact, for sufficiently 
low transmissions, the transmitted beam may become comparable in magnitude to the background. 
This obviously results in inefficient counting. On the other hand, if a very thin absorber is used, the 
intensity of the transmitted beam approaches that of the incident beam, and again the geometry is 
statistically unfavorable. Therefore some intermediate value of the transmission should be employed, 
and of course this is commonly done. 

It may sometimes be desirable to know what value of the transmission is best if the greatest ac- 
curacy is to be obtained in a given time or if a preassigned accuracy is to be attained in the least time. 
Moreover, the dependence of this optimum transmission on background is essential. In addition, it is 
important to determine the sensitivity of the precision of measurement or the total counting time to 
deviations from optimum geometry. Further questions are concerned with the best apportionment of 
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the total counting time among incident beam, transmitted beam, and background, and its dependence 
on the background and the thickness of absorber. These questions become important when the total 
available counting time is strictly limited by radioactive decay of the absorbing material, or by other 
considerations. They are also relevant in other situations in which high counting efficiency is desira- 
ble. The answers to these questions depend upon the way in which the background varies and upon 
certain geometric properties of the beam, the absorber, and the detector. 

The present discussion is based on the following assumptions, (a) The flux density in the incident 
beam is constant in time and independent of geometry, (b) The total background rate is likewise 
constant, (c) The detector completely intercepts the beam, (d) The efficiency of the detector is the 
same for the incident and transmitted beams, (e) The transmission is an exponential function of the 
absorber thickness; i.e., the absorber thickness is small compared to the scattering mean free path. 
To the extent that the optimum transmission is significantly less than unity, which will almost always 
be true, this also implies that the absorption cross section must be much larger than the scattering 
cross section. 

Two cases will be considered: 

I. The total counting rate of the incident beam is fixed (i.e., the cross-sectional area of the 
beam is fixed); the thickness of absorber can be varied. This is the usual situation. 

n. The total counting rate of the incident beam is not fixed but disposable by changing the area 
of the beam, subject to the condition that the total amount of absorber in the path of the beam remains 
fixed. Adjustment of the beam area may be advantageous when the amount of absorber available for 
the measurement is small, and it is desired to exploit the absorber fully by placing all of it in the 
path of the beam. 

CALCULATION OF OPTIMUM CONDITIONS 

By virtue of the assumption of constant background a transmission measurement consists in ob- 
taining three counting rates. This simplicity may not be present in the case of individual experimental 
arrangements. For example, the background may depend on absorber thickness, in which case at least 
one additional counting rate must be determined. However, such cases can easily be treated by the 
procedure described below. 

Designating the counting times for the incident and transmitted beams, including background, by 
tfl and t, respectively, and the counting time for the background by tg, we have for the counting rates 

r. = ci/ti (1) 

Where c0, c,, and c, are the total counts for these three measurements, respectively. The flux 
densities in the incident and transmitted beams, exclusive of background, are denoted by sQ and s1 

respectively, so that 

Si=(ri-r2)/a      (1=1.2) . (2) 

where a is the cross-sectional area of the beam. The transmission T can then be written as 

T = Vso = <rrra>/W =e_x (3) 

where 

x = Na/a (4) 
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N is the total number of atoms in the path of the beam and a is the total cross section per atom of 
absorber. 

We use the symbol A prefixed to any quantity to indicate the standard error in that quantity. The 
relative standard error 4<T/J in the cross section a is obtained by applying the law of propagation of 
error to 

a =-a/NlnT (5) 

so that 

/Afff   (do_*a_f     /9a AN\2    / da AT\2 

\  a )~   \8a  a   ) + UN  a /  + \8T   a I 

We shall confine our attention to the contribution of the third term, i.e., assume that Aa and AN are 
negligible. Subject to this condition, we have 

14 a I      |8a ATI 
HTI =ler—I (6> 

From (4), (5), and (6), 

p2 = (AT/TlnT)2 = (4T/T)2 /x2 (7) 
9 

To evaluate p , we apply the law of propagation of error to (AT/T)   using (3): 

(Ar)2 + (Ar)2    (Ar f + (Ar/ 
(AT/T)2 = —i §- + — 1  (8) 

t'r'J (r0_r2) 

Since the errors in measuring the times t are almost invariably negligible, we have, from (1), 

2 
Here and in the following i takes on values 0, 1, and 2. With (Ac^   = c., it follows that 

(Ar/ = rj/tj 

(9) 

(10) 

Substituting from equations (2), (3), and (10) into (8), 

r r r        r 
2x/l 2\      0       2 B iTT+tr)+t~+tr ^I)2=-L rlr;      2 2 soa 1        2 o        2 

(ID 

It is convenient to introduce the total counting time r 

r=Vt1 + t2 (12) 

and to replace the partial counting times t, by the relative counting times a.: 

with 

a.=t./r (13) 
l      l 

X «. = 1 (14) 
i     i 
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Using equations (11) and (13), and multiplying both sides by T, (7) can be written: 

p or 2x x 2x 1 
p T = (l/xsQa) [(r2 + s2a)/a0 + (r2e     + sQae )/a^ + (ly     + r^/orj (15) 

As might have been expected, the total counting time is inversely proportional to the square of the 
relative error in the cross section. 

We shall now investigate the optimum geometry and apportionment of counting times, treating 
in turn the two cases previously described. 

I. Cross-sectional Area of Beam Fixed 

Let the relative background m be defined by 

m = r2/(Vr2) = r^a (16) 

Substitution of this in equation (15) yields 

p2r = (l/x2
S()a) [(m + l)/aQ + (me2x + e*)/^ + m(e2x + l)/aj (17) 

From this it is evident that whether it be required (a) to minimize r for a preassigned p or (b) 
to minimize p for a fixed T, the optimum conditions are the same. The adjustable parameters in 
either case are x, which refers to the geometrical arrangement, and the a   which refer to the 
apportionment of counting times. 

Requirement (a) may occur when there is no essential restriction on the total counting time, 
and an upper limit is preassigned to the relative error p. To be sure, p can then be made arbitrarily 
small, regardless of geometry or apportionment of counting times, merely by counting long enough. 
However, it is sometimes worth while to select experimental conditions which will keep p below the 
prescribed limit in the least time. For example, in a long series of transmission measurements 
the time saved can be significant. 

Requirement (b) applies when the total available counting time is limited, e.g., by radioactive 
decay of the absorber material, or in cosmic-ray experiments at high altitudes. Here p cannot be 
made arbitrarily small, but the experimental conditions can be chosen so as to minimize it. 

For the calculation it is convenient to introduce the notation: 

f2 = (m + l)/x2 

.2     .     2x      xw 2 
f   = (me     + e )/x 

f2 = m(e2x + l)/x2 (18) 

so that 

p2T = (l/s0a) f (f.2 /«.) (19) 

Designating differentiation with respect to x by primes, the solutions are given by 

Si.i'./a=0 (20) 
l   11     i 

Minimizing with respect to the a . and taking equation (14) into account, we obtain 
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«i=fi/ffi (21) 

Substitution of (21) into (20) gives 

S fj = 0 (22) 

or, more explicitly, 

me2x [(1/fi) + (l/f2)]  + ex/2fi~x £ fi = 0 (22a) 

It is seen that the optimum values of the parameters x and a j depend on the relative background m alone, 

a) Optimum Transmission 

By numerically solving equation 22a for x as a function of m, the optimum transmission 
Topt = e'^P* is evaluated as a function of the relative background m. In Figure 1, Topt is plotted over 
a wide range of m, from 10"3 to 102. It will be noticed that even for very large backgrounds, Topt 

does not exceed 0.31, and, in general, the optimum transmissions are considerably smaller than those 
frequently used in absorption experiments. 

The results in Figure 1 may be crudely summed up by the following useful rule. From the point 
of view of counting efficiency, a transmission of about 0.1 should be employed for low backgrounds, 0.2 
for moderate backgrounds, and 0.3 for high backgrounds. The meaning of "low," "moderate," and 
"high" will be evident from Figure 1. This rule is applicable when the cross-sectional area of the 
beam is fixed and the absorber thickness can be adjusted; moreover, the conditions (a) to (e) specified 
in the introduction are assumed to hold at least approximately. If the background changes significantly 
during an experiment, and it is inconvenient to change the absorber thickness, then a fairly good pro- 
cedure is to use a transmission appropriate to an average background. This is a consequence of the 
insensitivity of Topt to m. As will be evident from the subsequent discussion,(Section (d) below, also 
Figure 5) these rules have wider applicability than might be supposed at first glance. 

When the background is absent (m = 0), equation (22a) reduces to- 

(x-2)2 = 4e"x (23) 

and the solution is 

Topt = 0.076 

This special case "las been previously considered by Rainwater and Havens.* 

b) Optimum Counting Times for Optimum Transmission 

The best apportionment of counting times for any value of m is obtained by substituting into (21) 
the root of (22a) for that m, i.e., by putting the optimum transmission into (21). Although the optimum 
fractional times Qfj are functions of m alone, they can be plotted against T0pt instead of m, since to 
each m there corresponds a unique T0pt- In Figure 2 the a i are so plotted. The curve labeled OQ 
gives the fractional time which should be devoted to counting the incident beam, aj the transmuted 
beam, and a2 

üie background. It will be recalled from Figure 1 that increasing values of Topt cor- 
respond to increasing m. Figure 2 shows that at low T0pt (and therefore low backgrounds) the back- 
ground rate r2 is relatively unimportant and need not be measured with great precision; most of the 
time T should be devoted to measuring r^ which is small compared with TQ. AS the background in- 
creases, r2 contributes more significantly to the quantities r0-r2and rj-rj. (the true counting rates 
for incident and transmitted beams), and it becomes necessary to measure r2 more and more accu- 

♦Phys. Rev. 70:146 (1946). 
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rately. The required time is obtained mainly at the expense of r1; which of course increases with 
Topt so that tt can ** adequately measured in less time. 

c) Deviations from Optimum Geometry 

Optimum counting times when arbitrary transmission is used: Li some experiments it may be too 
difficult or even unwise* to employ the optimum transmissions derived here. For any transmission 
T which may be used, however, there is still an optimum apportionment of counting times. These «i 
are given by (21), as before, but they are now functions of two independent parameters, T and m, in- 
stead of m alone (or T alone). Accordingly, for all nonoptimum (as well äs optimum) transmissions 
a family of curves can be plotted for each «j, as in Figures 3 and 4. Figure 3 gives the fractional 
time a0 which should be devoted to counting the incident beam, as a function of T for various relative 
backgrounds corresponding to the values of m with which the curves are labeled. Figure 4 shows the 
fractional time for the transmitted beam. The fractional background time c*2 is, of course, simply 
l-a0-av 

d) Deviations from Optimum Geometry 

Effect on p or T : It may now be asked, how sensitive is the relative error p or the total counting 
time r to deviations from the optimum thickness of absorber; i.e., what price is paid in increased 
counting time or decreased accuracy for a given departure from Topt? The answer depends in part 
upon whether the best apportionment of times or some arbitrary set «i is used. Since situations in 
which the optimum aj should not be used (when counting efficiency matters) are difficult to conceive, 
we shall assume that this partial optimum condition is realized.t The sensitivity can then be measured 
by the deviation of the ratio (p^T^^T^irom its minimum value of unity. Large values of this ratio 
are of course undesirable, as they imply large uncertainty or an unduly long time required to attain a 
preassigned accuracy. 

Combining equations (19) and (21), 

p2T=(l/soa)(.Efi)2 (24) 

p2T depends on both m and T (i.e., on m and x). The minimum of p2r is (pMopt» aild ^^ is evaluated 
from the solution of equation (22a) for each value of m. 

The ratio ^r/{p2r)opt is plotied in Figure 5 for various values of m (numbers affixed to each 
curve) as a function of T. It is evident from the flatness of the minima in Figure 5 that moderate de- 
viations from Topt are only slightly disadvantageous; i.e., it matters little if the geometry used is not 
very close to the optimum. On the other hand, the steep portions of the curves, and especially those 
for T < Topt show that for large departures from Topt, a significant and rapidly rising increase in 
error or counting is time incurred. Thus, from the curve for the smallest relative background, m = 10-3, 
it is clear that a transmission as small as 0.01 is decidedly disadvantageous, as Would be expected. 
The same curve, however, also shows that using a transmission of 0.61 instead of the optimum (»0.1), 
necessitates a 6-fold increase in the counting time to achieve a given accuracy; or, in a given counting 
time, increases the relative error p by a factor 1/6. 

In general, for low backgrounds, transmissions exceeding 0.6 should be avoided if possible, and even 
for very high backgrounds, it is unwise to exceed 0.75. Inspection of Figure 5 confirms the working 
rule previously deduced from Figure 1, i.e., that transmissions of about 0.1, 0.2, and 0.3, respectively, 

* For example, in spectrometry, where higher-order effects introduce errors which are some- 
times difficult to measure, the magnitude of these effects may be reduced by using higher trans- 
missions. Another example is given in Pby. Rev. 70:147 (1946). 

t It should be noted that the best apportionment of 04 for nonoptimum T is in general different 
from that shown in Figure 2, as discussed in the previous section. The apportionment for any T is 
given in Figures 3 and 4. 
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are suitable for use with low, m derate, and high backgrounds. 

Figure 5 can be used to ascertain the permissible range of transmissions if p2 ris not to exceed 
(p2T)opt by more than some preassigned factor. For example, suppose m = 0.1, and it is desired not 
to exceed the minimum counting time (for a given accuracy) by more than a factor 2. From the curve 
labeled 0.1 in Figure 5 it is seen that the transmission should lie in the range 0.06 < T  < 0.5. 

The permissible range of transmissions as a function of relative background is shown more direct- 
ly in Figure 6, for several maximum values, 1.2, 2, and 4, of p2T/(p2T)opt. The numbers on the curves 
are values of this ratio. Thus, if p2 T/(p2T)0pt is not to exceed 2, the highest permissible transmission 
is shown by the upper curve "2", and the lowest by lower curve "2". For example, it the relative 
background is 0.01, and it is desired not to spend more than twice the minimum time in obtaining a 
given accuracy, the allowable range of transmissions runs from 0.03 to 0.42. IE the total counting time 
is fixed, the relative error in a will then exceed the minimum error by at most fä. 

e) Evaluation of (p T)opt 

For a given relative background or a given Topt, it may be desired to estimate quickly the value 
of (p2T)opt. The latter depends on the absolute background as well as on m (or k). 

Case 1: Using (16), equation (24) can be rewritten 

p2Tr2 = m(Xfi)
2 (24a) 

When for a given m the corresponding Xopt is substituted in the right-hand side of equation 24a, this 
becomes 

J = (p2r)optr2 = m(Xfi)
2

pt (24b> 

The right-hand side can be expressed as a function of m alone or of Topt alone. In Figure 7, T is 
plotted against Topt. 

n. Beam of Variable Cross-sectional Area 

When only a small sample of absorber is available for a cross-section measurement by trans- 
mission, it may be advantageous to place all of it in the path of the beam. We suppose that the cross- 
sectional area a of the beam and the area of the absorber sample are adjustable so that the two can 
be kept equal. It is further assumed that the total counting rate of the incident beam, unlike that in 
Case I, is not fixed, but varies in proportion to a, subject to the condition that the total amount of ab- 
sorber in the path of the beam remains fixed. This condition implies, of course, that the thickness 
of absorber varies as 1/a. The problem is whether to make the absorber thick and the beam narrow, 
or the absorber thin and the beam wide. Here again, to a given relative background there corresponds 
an optimum transmission; however, the latter now determines not only the optimum absorber thickness 
but also the optimum beam area. It is fairly evident that the value of the best transmission here will 
differ from that for Case I. It is true that in both cases the thickness of absorber changes, but in 
Case n the beam area also changes, while the total number of atoms in the path of the beam remains 
fixed. In Case I the reverse is true; the beam area is fixed, and the number of atoms in the path of 
the beam varies with the thickness. 

The derivation of Topt is parallel to that in Case I. p2 r is again minimized with respect to x and 
two of the »j. It is convenient here to introduce a new parameter in place of m (See (16)). The latter 
is suitable when a is independent of T, but this is not true in Case n, where a choice of a at once de- 
termines T. We define instead a new "relative background," 

k = r2/soN<r (25) 

in which the product T>b, which is constant here, takes the place of a, which is constant in Case I.* 

♦Comparison of definitions (25) and (16) shows that m = kx. 
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Replacing j^a2 by N2a2 (See (4)), and introducing k, equation (17) can be rewritten 

p2 r = (1/sQNa) [(k + l/x)/a 0 + 0<e2x + ex/x)/a i + k (e2x + l)/a 2] (26) 

which corresponds to equation (17) in Case I. Similarly, corresponding to the f2 in (18), we define 

*g = k+l/x 

02 = ke2x + ex/x (27) 

*| = k(e2x + 1) 

so that equation (26) can be written 

P2r=(l/soNff)X0f/«i (28) 

Minimizing with respect to x, «o> and al> subject to (14), gives 

£ty*>i) = 0 (29) 

oq =</>i/L <fii (30) 

and substitution of equation (30) into (Z9) gives the result 

E4>\ = 0 (31) 

which can be written explicitly as 

2ta?e2x{ltfi + l/#2) + eV^x-l) = Wo = 0 (31a) 

a) Optimum Transmission 

This equation in x and k has been solved numerically, and the results are given in Figure 8. Here 
e_x = Topt is plotted against k. The optimum transmissions are higher than those shown in Figure 1 
for all values of the relative background; in particular, they approach 1.0 rather than 0.31 for large k. 
The difference can be explained as follows: As we have seen, a transmission is statistically unfavor- 
able when either of the true counting rates rj-^ or r0-ri is too small. In both cases which we have 
discussed a larger background can be partly offset by increasing rj; hence Topt increases with re- 
lative background. In Case I, however, as r! increases it approaches r0 which is fixed (since a is 
fixed) so that beyond a certain point (which turns out to be T = 0.31), it is no longer advantageous to 
increase rj. In Case H, for larger relative backgrounds, rx Is increased as before by thinning the 
absorber. However, a is simultaneously enlarged so that the increase in the transmitted counting rate 
is automatically accompanied by an increase in the Incident rate. Thus, although (ro-ri)/rQ still 
decreases with increasing T, it does so more slowly than in Case I, and the decrease is offset by the 
increased counting rates of both incident and transmitted beams. Hence, in Case H, it is advantageous 
for very large backgrounds to increase T up to the maximum value allowed by expanding the beam area. 

When the background is zero (k = 0), equation (31a) reduces to 

(x-l)2 = e"x (32) 

and the solution is 

e-x=Topt = 0.228 
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b) Optimum Counting Times When Topt Is Used 

Equation (30) gives the best apportionment of counting times for a given value of k, provided 
that the root of (31a) corresponding to that k is substituted in (30). Since there is a one-to-one cor- 
respondence between k and Topt, the optimum fractional times öQ, «I, and a 2 can De plotted against 
the optimum transmission (instead of against k). This has been done in Figure 9. 

c) Deviations from Optimum Geometry 

Optimum aj for Arbitrary T: When a nonoptimum transmission is used, the best aj are, as 
might be expected, identical with those deduced for Case I. These a j could be obtained by substitut- 
ing into equation (30) the relevant value of x (i.e.,-lnT) and k. But it is no longer necessary or even 
useful to employ k, since T, and therefore a, is now fixed (k was introduced in place of m in deriving 
Topt because the latter contains a, which in Case II depends on T). It is better instead to revert to m 
as a measure of the relative background.* Moreover, equation (22) is identical with equation (30) for 
a given value of T. This can be seen by replacingt  k with m/x in (27), and substituting the resulting 
0i into (30). Thus, for nonoptimum transmissions, the best 04 are the same regardless of whether 
the experimental conditions are those of Case I or Case n. Two of the 04 are plotted, as we have seen, 
in Figures 3 and 4, respectively, and the third is obtained by subtracting the sum of the first two from 
1 (See (14)). 

d) Deviations from Optimum Geometry 

Effect on p or T: As in Case I, the sensitivity of p or T to departures from optimum geometry 
can be deduced from the variation of the ratio p2 T/(p2T)opt with transmission. In the present case 
p2r is evaluated from equations (28) and (30) with the result: 

p2T=(l/s0Na)(X^i)
2 (33) 

(p2T)    tfor a given k is evaluated by substituting in (33) the solution of (31a) for that value of k. 
Equation (33) can be used to compute the permissible range of transmissions if p2 r is not to exceed 
its minimum value (p2r)opt by more than some preassigned factor. In Figure 10 (the analogue of 
Figure 6) this permissible range of T is given as a function of k for the values 1.2, 2, and 4 of 
P2T/(p2T)0pt. As in Figure 6, there are two curves for each of these values, the upper curve showing 
the upper limit on T, and the lower one showing the lower limit. 

e) Evaluation of (pr)0^ 

In the same way as in section 1(e), but now using (25), equation (33) can be rewritten 

(P2T)opt r2 = k<**i)2 (25a> 

and substituting xopt, obtained from equation (31), this becomes 

*To determine m, only TQ and r£ need be measured; to determine k, on the other hand, rj must 
be measured as well, as is evident from the definitions of these quantities. In fact, by equations (16), 
(25), and (3), 

m r2 k= — =- 
x       (r0-r2)lnr1-r2 

ro~r2 

t Comparison of definitions (25) and (16) shows that M = KX. 



10 AECD - 2197 

G = (P2T)0pt r2 = k (Xrfjjjpt (25b) 

In Figure 11, G is plotted against Topt. 

DISCUSSION 

The utility of this investigation depends largely on the insensitivity of p2 r to moderate deviations 
from Topt, as shown by the flatness of the minima in Figure 5. This is evident from the following con- 
siderations: Topt depends on m in Case I, and on k in Case n. A knowledge of m, however, depends on 
the measurement of rg and r2 (See (16)); k depends on these two parameters and on rj as well. (See 
preceding footnote*) Thus we are confronted with a paradoxical requirement of measuring two (or, in 
Case n, all three) of the counting rates from which T is deduced before we can calculate the statisti- 
cally favorable conditions for making these very measurements. Moreover, in order to choose the 
optimum absorber thickness, once Topt has been determined, the cross section (or, more generally, 
the absorption coefficient) must be known. Since the latter depends on T, all three of the counting 
rates must be known in advance even in Case I. hi practice, however, this is not a real difficulty. It 
has been shown that p2r changes so slowly in the neighborhood of Topt that moderate deviations from 
Toptare unimportant. Thus a rough preliminary measurement of the counting rates suffices to give 
an estimated absorber thickness which can be used for practical purposes. The time consumed by 
these preliminary -measurements should in general be quite short compared with that for the final 
measurements, since the time required for a count is inversely proportional to the square of the 
permissible error, and the latter may be fairly large without leading to a significantly poor estimate 
of Topt. 

The results presented here apply when the primary considerations are the statistical ones de- 
scribed above. It is recognized that circumstances may arise in which other considerations are im- 
portant. H may then be desirable or even necessary to use nonoptimum transmissions. The fore- 
going remarks about deviations from optimum geometry indicate to what extent this may be done 
without incurring unduly large statistical errors, hi addition, regardless of what transmission is 
used, the optimum apportionment of counting times given in Figures 3 and 4 will still be applicable. 
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